SOME REMARKS ON VOLUME AND DIAMETER OF RIEMANNIAN MANIFOLDS

ROBERT BROOKS

In this note, we provide some remarks concerning a recent paper of Burger and Schroeder [4]. Their paper gives a relation between volume, diameter and the first eigenvalue of the Laplacian for compact quotients of rank 1 symmetric spaces. Here we will show how their results lead to analogous results for coverings of a fixed, but arbitrary, Riemannian manifold.

Theorem 2 of [4] states:

Theorem ([4]). Let $\mathbf{H} = \mathbf{H}_{\mathbb{R}}^n$ for $n \ge 4$, $\mathbf{H}_{\mathbb{C}}^n$, $\mathbf{H}_{\mathbb{H}}^n$, or $\mathbf{H}_{\mathbb{Q}}^2$.

Then there are constants a_n , b_n depending only on n such that for M a compact quotient of H,

$$\lambda_1(M) \leqslant \frac{a_n + b_n \log(\operatorname{vol}(M))}{\operatorname{diam}(M)}.$$

Note that for $\mathbf{H} = \mathbf{H}_{\mathbb{R}}^n$ or $\mathbf{H}_{\mathbb{C}}^n$ we may have $\lambda_1(M)$ arbitrarily small. The fact that this is not the case for $\mathbf{H} = \mathbf{H}_{\mathbb{H}}^n$, or $\mathbf{H}_{\mathbb{O}}^2$ follows from Kazhdan's Property T [5]. The fact that the isometry groups of these symmetric spaces have Property T is due to Kostant [11].

Our main result here is:

Theorem 1. Let M be an arbitrary compact manifold, and M_i a family of finite coverings of M. If there exists C > 0 such that $\lambda_1(M_i) > C$, then there exist positive constants a, b, and c such that

$$a < \frac{\log(\operatorname{vol}(M_i)) + c}{\operatorname{diam}(M_i)} < b.$$

Proof. We first observe that, according to [7], for each n, and in particular for n = 4, there exists a compact quotient

N of
$$\mathbf{H}_{R}^{n}$$

with a surjection $\pi_1(N) \to \mathbb{Z} * \mathbb{Z}$.

Received August 4, 1986 and, in revised form, October 31, 1986. Partially supported by NSF grant DMS-8501300; Alfred P. Sloan fellow.

Now suppose that $\pi_1(M)$ is generated by k elements. Then there is a finite covering N' of N and a surjection ϕ : $\pi_1(N') \to \mathbb{Z} * \cdots * \mathbb{Z} \to \pi_1(M)$.

Let N_i' be the coverings of N' induced from those of M_i —

$$\pi_1(N_i') = \phi^{-1}(\pi_1(M_i)).$$

Claim. There exist constants C', d' and k' such that

(a)
$$\lambda_1(N_i') > C'$$
,
(b) $\operatorname{vol}(N_i') = d' \operatorname{vol}(M_i)$,
(c) $\operatorname{diam}(N_i') > k' \operatorname{diam}(M_i)$.

Proof. (a) is just Theorem 4 of [3].

- (b) follows with d' = vol(N')/vol(N)
- (c) follows from the Milnor-Svarc lemma [8], which implies that $\operatorname{diam}(N_i')$ and $\operatorname{diam}(M_i)$ are both estimated up to constants by the group-theoretic diameter of $\pi_1(M)/\pi_1(M_i)$, relative to a fixed set of generators for $\pi_1(M)$.

We now apply the theorem of [4] to show that there is a constant a' with

$$a' < \frac{\log(\operatorname{vol}(N_i')) + c}{\operatorname{diam}(N_i')}$$
.

It follows from the Claim that

$$\frac{\log(\operatorname{vol}(M_i)) + \log(d') + c}{\operatorname{diam}(M_i)} \ge \frac{\log(\operatorname{vol}(N_i')) + c}{k' \operatorname{diam}(N_i')}$$
$$\ge (\operatorname{const}) \frac{\log(\operatorname{vol}(N_i')) + c}{\operatorname{diam}(N_i')} \ge (\operatorname{const}) a'.$$

The inequality

$$\frac{\log(\operatorname{vol}(M_i))}{\operatorname{diam}(M_i)} \leqslant b$$

is true in complete generality, and follows immediately from the Comparison Theorem. b depends only on a lower bound for the curvature of M and the dimension of M. Combining these gives Theorem 1.

We remark here that one could also prove Theorem 1 by use of a graph theoretic isoperimetric inequality due to Alon and Milman [1], see also Gromov-Milman [12]. It is worth remarking that the ideas that go into the

proof of [1] (which is completely elementary) are similar in many points to the ideas behind the proof of [4].

We may extend the ideas in our proof of Theorem 1 to show:

Theorem 2. For each n, there exists a compact hyperbolic n-manifold N and coverings N_i of N such that

- (i) $\lambda_1(N_i) \to 0$ as $i \to \infty$.
- (ii) There exists C > 0 such that $\log(\operatorname{vol}(N_i)) / \operatorname{diam}(N_i) > C$.

Proof. Let us begin with an arbitrary manifold M with a family of coverings M_i such that $\lambda_1(M_i)$ is bounded away from 0 and diam $(M_i) \to \infty$. For instance, we could choose M with $\pi_1(M) = SL(2, \mathbb{Z})$, and M_i the congruence coverings of M.

Now let $M' = M \times S^1$, and for each k let M'_k be the covering of M' whose fundamental group is $\pi_1(M_i) \oplus ([\log(\operatorname{diam}(M_i))] \times \mathbb{Z}) \subset \pi_1(M) \oplus \mathbb{Z}$.

To see that

$$\lambda_1(M_k') \to 0 \text{ as } k \to \infty,$$

we compute the isoperimetric constant $h(M'_k)$. But dividing M'_k into two pieces along the fibers of antipodal points of the $[\log(\operatorname{diam}(M_i))]$ -fold cover of S^1 , shows that

$$h(M'_k) \le \frac{2\operatorname{vol}(M_k)}{1/2[\log(\operatorname{diam}(M_k))]\operatorname{vol}(M_k)} \to 0 \text{ as } k \to \infty.$$

The fact that $\lambda_1(M_k') \to 0$ as $k \to \infty$ then follows from Theorem 1 of [3], or can be seen directly. But $\operatorname{vol}(M_k') = \operatorname{vol}(M_k) \times [\log(\operatorname{diam}(M_k))]$ and $\operatorname{diam}(M'k) \leq (\operatorname{const})(\operatorname{diam}(M_k) + [\log(\operatorname{diam}(M_k))]$ as can be seen again from the Milnor-Svarc lemma.

Hence,

$$\frac{\log(\operatorname{vol}(M_k'))}{\operatorname{diam}(M_k')} \geqslant \frac{\log[\log(\operatorname{diam}(M_k))] + \log\operatorname{vol}(M_k)}{2\operatorname{const}(\operatorname{diam}(M_k))} \geqslant \operatorname{const},$$

since

$$\frac{\log(\operatorname{vol}(M_k))}{\operatorname{diam}(M_k)} \geqslant \text{const by Theorem 1.}$$

We now repeat the argument of Theorem 1 to find a hyperbolic manifold N with a surjective map $\pi_1(N) \to \pi_1(M \times S^1)$, whose coverings have the same properties.

As an example of this circle of ideas, we show:

Theorem 3. For each $n \ge 2$, let us choose generators for $SL(n, \mathbb{Z})$. Then there is a constant C_n depending only on n and the choice of generators, such that $\operatorname{diam}(SL(n, \mathbb{Z}/p)) < C_n \log p$.

Proof. We first observe that if $\pi_1(M) = SL(n, \mathbb{Z})$, the congruence coverings M^p of M satisfy $\lambda_1(M^p) > C$ for some C > 0.

When $n \ge 3$, this follows from the fact that $SL(n, \mathbf{R})$ has Property T and [3]. When n = 2 this follows from [3] and Selberg's Theorem [9] that $\lambda_1(\mathbf{H}^2/\Gamma_p) \ge 3/16$, where Γ_p is the pth congruence subgroup. The fact that [3] applies despite the noncompactness of $\mathbf{H}^2/SL(2, \mathbb{Z})$ is discussed in [2].

It follows from Theorem 1 that

$$\frac{\log(\operatorname{vol}(SL(n,\mathbb{Z}/p)))}{\operatorname{diam}(SL(n,\mathbb{Z}/p))} \ge a$$

for some $a \ge 0$. But $\log(\operatorname{vol}(SL(n, \mathbb{Z}/p))) \le \log(p^{n^2}) = C_n \cdot \log(p)$ and the theorem is proved.

Corollary 4. For p a prime number, consider the set $Vp = \{0, 1, \dots, p-1, \infty\}$. Then there is a C independent of p such that any $a, b \in Vp$ can be joined by a sequence of at most $C \log(p)$ moves of the type $x \to x+1$, x-1, $x \to \overline{x}$, where \overline{x} is the multiplicative inverse of $x \pmod{p}$, $\overline{0} = \infty$, and $\overline{\infty} = 0$.

Proof. This is the graph of $SL(2,\mathbb{Z})/\Gamma_p^*$, where

$$\Gamma_p^* \supset \Gamma_p \text{ is the Hecke group} \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}.$$
(mod p)

We close this paper with the following example, shown to us by John Millson and based on work of R. Livne [6]:

Theorem 5. There exists a compact quotient M of $\mathbf{H}^2_{\mathbb{C}}$, such that $\pi_1(M)$ surjects onto $\mathbb{Z}*\mathbb{Z}$.

At present, we don't have examples of $\mathbf{H}_{\mathbb{C}}^{n}$, n > 2, whose fundamental group surjects onto $\mathbb{Z} * \mathbb{Z}$.

We remark that Theorem 5 allows us to extend those results of [4] (in particular remark (iii)) and the present paper which only applied to $\mathbf{H}_{\mathbb{R}}^{n}$ also to $\mathbf{H}_{\mathbb{C}}^{2}$.

Proof. We consider the following situation: for each N, let X(N) be the compactified moduli space for elliptic curves with level N structure, and E(N) the universal elliptic curve of level N. Then when $N \ge 3$, X(N) is a smooth Riemann surface, and there is a submersion $E(N) \to X(N)$ which, away from finitely many points of X(N), is a fibration whose fibers are elliptic curves.

There are N^2 sections of this fibration taking a point in X(N) to one of the N^2 points of order N on the fiber.

For each integer d, let $S_d(N)_{\Delta}$ be a d-fold cyclic branched covering of E(N) which is totally ramified along these N^2 sections, and is a covering away from these sections.

By calculating Chern numbers, and appealing to a characterization of quotients of $\mathbf{H}_{\mathbb{C}}^2$ due to Yau [10], Livne showed in [6] that $S_d(N)_{\Delta}$ can be realized as a compact quotient of $\mathbf{H}_{\mathbb{C}}^2$ precisely when (N,d) is one of the pairs (7,7), (8,4), (9,3) or (12,2). For these values, he also explicitly constructs a realization of $\pi_1(S_d(N)_{\Delta})$ as a discrete, cocompact subgroup of PU(2,1). In all of these cases, X is a Riemann surface of genus ≥ 2 .

We now claim:

Claim: $\pi_1(S_d(N)_{\Lambda})$ surjects onto $\mathbb{Z}*\mathbb{Z}$.

Proof. It suffices to show that $\pi_1(S_d(N)_{\Delta})$ surjects onto $\pi_1(X(N))$.

So pick a base-point p in $S_d(N)_{\Delta}$, and a point p_E in E(N) lying over p and not a point of order N.

If γ is any loop at p, we jiggle it slightly if necessary to guarantee that γ avoids the singular values on X(N). We then use the fact that $E(N) \to X(N)$ is a fibration away from the singular values to lift γ to a curve on E(N) starting at p_E . Since the fibers are connected, we may close this curve up to a loop $\tilde{\gamma}$ based at p_E which projects onto γ .

We may now jiggle $\tilde{\gamma}$ so that it avoids the N^2 sections, and so lift it to a curve on $S_d(N)_\Delta$. Again since the fibers are connected, we may close this up to a closed curve on $S_d(N)_\Delta$ whose homotopy class projects onto that of γ , showing that $\pi_1(S_d(N)_\Delta)$ surjects onto $\pi_1(X(N))$. This completes the claim, and hence the theorem.

References

- N. Alon & V. D. Milman, λ₁, isoperimetric inequalities for graphs, and superconcentrators, J. Combinatorial Theory Ser. B 38 (1985) 73–88.
- [2] R. Brooks, On the angles between certain arithmetically defined subspaces of Cⁿ, Ann. Inst. Fourier (Grenoble), to appear.
- [3] _____, The spectral geometry of a tower of coverings, J. Differential Geometry 23 (1986) 97-107.
- [4] M. Burger & V. Schroeder, Volume, diameter, and the first eigenvalue of locally symmetric spaces of rank one, J. Differential Geometry 26 (1987) 273-284.
- [5] D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Functional Anal. Appl. 1 (1968) 63-65.
- [6] R. Livne, On certain covers of the universal elliptic curve, Ph.D. thesis, Harvard University, November, 1981.
- [7] J. Millson, On the first betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976) 235-247.

- [8] J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968) 1-7.
- [9] A. Selberg, On the estimation of fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. 8, Amer. Math. Soc., Providence, RI, 1965, 1–15.
- [10] S. T. Yau, On Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977) 1798–1799.
- [11] B. Kostant, On the existence and irreducibility of certain series of representations, Lie Groups and their Representations, (I. M. Gelfand, ed.), Halsted, NY, 1975.
- [12] M. Gromov & V. D. Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983) 843–854.

University of Southern California