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SOME REMARKS ON VOLUME AND DIAMETER
OF RIEMANNIAN MANIFOLDS

ROBERT BROOKS

In this note, we provide some remarks concerning a recent paper of Burger
and Schroeder [4]. Their paper gives a relation between volume, diameter and
the first eigenvalue of the Laplacian for compact quotients of rank 1 symmetric
spaces. Here we will show how their results lead to analogous results for
coverings of a fixed, but arbitrary, Riemannian manifold.

Theorem 2 of [4] states:

Theorem ([4]). Let H=H} forn > 4, HL HE, or HY.

Then there are constants a,, b, depending only on n such that for M a
compact quotient of H,

n:

a, + b,log(vol(M))
diam( M) '

Note that for H = H; or H{ we may have A;(M) arbitrarily small. The
fact that this is not the case for H = Hj},, or H} follows from Kazhdan’s
Property T [5). The fact that the isometry groups of these symmetric spaces
have Property T is due to Kostant [11].

Our main result here is:

Theorem 1. Let M be an arbitrary compact manifold, and M, a family of
finite coverings of M. If there exists C > 0 such that \|(M;) > C, then there
exist positive constants a, b, and ¢ such that

- log(vol( M,)) +
diam( M,)

Proof. We first observe that, according to [7], for each s, and in particular

for n = 4, there exists a compact quotient

Nof H}

M(M) <

C<b.

with a surjection m(N) — Z*Z.
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Now suppose that (M) is generated by k elements. Then there is a finite
covering N’ of N and a surjection ¢: 7, (N’) = Zx --- »Z — 7, (M).

k times

Let N/ be the coverings of N’ induced from those of M,—

m(N/) = ¢ (m(M)).
Claim. There exist constants C’, d’ and k' such that

(a) }\I(M/) >,
(b) vol (N/) = d’ vol (M,),
(c) diam (N,’) > k’ diam (M,).

Proof. (a)is just Theorem 4 of [3].

(b) follows with d’ = vol(N’) /vol( N)

(¢) follows from the Milnor-Svarc lemma [8], which implies that diam(N;)
and diam(M;) are both estimated up to constants by the group-theoretic
diameter of 7, (M)/7,(M,), relative to a fixed set of generators for o (M).

We now apply the theorem of [4] to show that there is a constant @’ with

, log(vo'l(N,.’)) +c
a < .
diam( N;')
It follows from the Claim that
log(vol( M,)) + log(d’) + ¢ S log(vol(M’)) +c¢
diam( M,) ~ k' diam(N,)

log(vol( M’)) +c
diam( N/)

> (const) > (const)a’.

The inequality

log(vol( M)

<b
diam( M;)

is true in complete generality, and follows immediately from the Comparison
Theorem. b depends only on a lower bound for the curvature of M and the
dimension of M. Combining these gives Theorem 1.

We remark here that one could also prove Theorem 1 by use of a graph
theoretic isoperimetric inequality due to Alon and Milman [1], see also
Gromov-Milman [12]. It is worth remarking that the ideas that go into the
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proof of [1] (which is completely elementary) are similar in many points to the
ideas behind the proof of [4].
We may extend the ideas in our proof of Theorem 1 to show:

Theorem 2. For each n, there exists a compact hyperbolic n-manifold N and

coverings N, of N such that
@A) A(N)—0asi— oo,

(i) There exists C > 0 such that log(vol(N,))/diam(N;) > C.

Proof. Let us begin with an arbitrary manifold M with a family of
coverings M, such that A;(M,) is bounded away from 0 and diam(M,) — cc.
For instance, we could choose M with = (M) = SL(2,Z), and M, the con-
gruence coverings of M.

Now let M’ = M x S, and for each k let M/ be the covering of M’ whose
fundamental group is m(M,) @ ([log(diam(M )] X Z) C m(M) & Z.

To see that

Al(Mk’) -0 ask — oo,

we compute the isoperimetric constant h(M;). But dividing M/ into two
pieces along the fibers of antipodal points of the [log(diam(M,))]-fold cover of
S, shows that

n(M)) < ?vol(Mk)
1,/2[log(diam( M, ))] vol( M, )
The fact that A;(M,) — 0 as k — co then follows from Theorem 1 of [3], or
can be seen directly. But vol(M]) = vol(M,) X [log(diam(M,)] and
diam(M ’k) < (const)(diam(M, ) + [log(diam( M, ) | as can be seen again from
the Milnor-Svarc lemma.
Hence,

log(vol( M) . log[log(diam( M, ))] + logvol( M, )
diam(M{) = 2 const(diam( M, ))

-0 ask — oo.

> const,

since

log(vol( M,))

> const by Theorem 1.
diam( M, ) ¢ Y

We now repeat the argument of Theorem 1 to find a hyperbolic manifold N
with a surjective map m(N) — m,(M X S'), whose coverings have the same
properties.
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As an example of this circle of ideas, we show:

Theorem 3. For each n > 2, let us choose generators for SL(n,Z). Then
there is a constant C, depending only on n and the choice of generators, such that
diam(SL(n,Z/p)) < C,log p.

Proof. We first observe that if (M) = SL(n,Z), the congruence cover-
ings M? of M satisfy A, (M?) > C for some C > 0.

When n > 3, this follows from the fact that SL(»,R) has Property T and
[3]. When »n =2 this follows from [3] and Selberg’s Theorem [9] that
A(H 2/I‘p) > 3/16, where I, is the pth congruence subgroup. The fact that [3]
applies despite the noncompactness of H2/SL(2, Z) is discussed in [2].

It follows from Theorem 1 that

log(vol(SL(n,Z/p))) >4
diam(SL(n,Z/p))

for some a = 0. But log(vol(SL(n,Z/p))) < log(p"z) = C, - log(p) and the
theorem is proved.
Corollary 4. For p a prime number, consider the set Vp = {0,1,---,
p — 1,00}. Then there is a C independent of p such that any a,b € Vp can be
Joined by a sequence of at most C log( p) moves of the type x - x + 1, x = 1,
x — X, where X is the multiplicative inverse of x(mod p), 0 = co, and % = 0.
Proof. This is the graph of SL(2,Z)/T ¥, where

(a b) _ ( * *)
I¥ 5T, is the Hecke groupq \¢  d 0 =
(mod p)

We close this paper with the following example, shown to us by John Millson
and based on work of R. Livne [6]:

Theorem 5. There exists a compact quotient M of HE, such that a,(M)
surjects onto L+Z.

At present, we don’t have examples of H¢, n > 2, whose fundamental group
surjects onto ZxZ.

We remark that Theorem 5 allows us to extend those results of [4] (in
particular remark (iii)) and the present paper which only applied to Hj also to
H2.

Proof. We consider the following situation: for each N, let X(N) be the
compactified moduli space for elliptic curves with level N structure, and E(N)
the universal elliptic curve of level N. Then when N > 3, X(N) is a smooth
Riemann surface, and there is a submersion E(N) — X(N) which, away from
finitely many points of X(N), is a fibration whose fibers are elliptic curves.
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There are N? sections of this fibration taking a point in X(N) to one of the
N? points of order N on the fiber.

For each integer 4, let S,(N), be a d-fold cyclic branched covering of
E(N) which is totally ramified along these N2 sections, and is a covering away
from these sections.

By calculating Chern numbers, and appealing to a characterization of
quotients of HZ due to Yau [10], Livne showed in [6] that S,(N), can be
realized as a compact quotient of HZ precisely when (N, d) is one of the pairs
(7,7, (8,4), (9,3) or (12,2). For these values, he also explicitly constructs a
realization of 7;(S,(N),) as a discrete, cocompact subgroup of PU(2,1). In all
of these cases, X is a Riemann surface of genus > 2.

We now claim:

Claim: 7(S;(N),) surjects onto Z*Z.

Proof. 1t suffices to show that =,(S,(N),) surjects onto 7 ( X(N)).

So pick a base-point p in S,(N),, and a point p, in E(N) lying over p
and not a point of order N.

If vy is any loop at p, we jiggle it slightly if necessary to guarantee that vy
avoids the singular values on X(N). We then use the fact that £(N) = X(N)
is a fibration away from the singular values to lift y to a curve on E(N)
starting at p . Since the fibers are connected, we may close this curve up to a
loop ¥ based at p, which projects onto v.

We may now jiggle ¥ so that it avoids the N? sections, and so lift it to a
curve on S,(N),. Again since the fibers are connected, we may close this up to
a closed curve on S,(N), whose homotopy class projects onto that of vy,
showing that 7,(S,(N),) surjects onto #;( X(N)). This completes the claim,
and hence the theorem.
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